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In the following, we provide more quantitative evalua-
tions and comparisons to previous methods (Sec. 1). Fur-
ther, we show more qualitative results of our method on
sequences from the internet and publicly available datasets
(Sec. 2). Finally, we provide more technical details about
our method (Sec. 3).

1. Additional Quantitative Evaluation
In the Dexter+Object (DO) [7] and EgoDexter (ED) [4]

datasets only ground truth finger tips were annotated. Exist-
ing works adopted two methods for alignment before eval-
uation: [8, 1, 3] aligned the predictions with ground truth
depth, and [2, 9, 6, 10] aligned the centroid of predicted and
ground truth finger tips. In the main document, we report
our results with centroid alignment. In Tab. 1, we report
our results with both two alignment approaches, and com-
pare with other works. We demonstrate that our approach is
superior to others under both alignment methods.

We further implement a optimization-based IK solver to
compare with the proposed IKNet. Following [5, 2], we
use the main coefficients of pose PCA bases to represent
the hand pose to make it physically plausible. The shape
representation remains the same as for the IKNet. More
specifically, the pose is represented by θ ∈ R12, and the
shape β ∈ R10. We define the energy function as the Eu-
clidean distance between corresponding joints of the input
and the posed hand model, and use Levenberg–Marquardt
algorithm to solve for θ and β:

θ, β = arg min
θ,β

∑
i=1

||Xi − Ji(θ, β)||2,

whereXi is the input location of joint i, and Ji(θ, β) is joint
i’s location in the MANO [5] hand model with shape β and
pose θ. The IK solver is evaluated on the same datasets
as IKNet with DetNet’s prediction as input. As shown in
Tab. 2, the IK solver has a lower accuracy than our proposed
IKNet. The main limitations of the IK solver are: first, the
energy function is highly non-convex which lets the solver

converge to local optima; second, without a complex pose
prior, the solver is not robust to noise and errors in the in-
put. In contrast, our IKNet naturally avoids the convexity
issue as at test time there is only a single feed-forward pass.
Further, it is able to handle inaccurate inputs thanks to the
learned prior and the 3DPosData.

We also perform an ablation study on the delta maps of
the DetNet. As shown in Tab. 3, the delta maps significantly
improve the result. This is because the delta maps provide
additional information about the relative positions of neigh-
boring joints.

2. Qualitative Results
Our architecture can also perform motion capture on in-

the-wild sequences by combining 2D and 3D predictions.
More specifically, given the hand bounding box of the first
frame, the model first estimates 2D and 3D joint locations
from the corresponding image crops, and then updates the
bounding box such that the 2D predictions lie in the cen-
ter of the new bounding box, which is used for cropping the
next frame. Thus, our system can predict hand pose from in-
the-wild sequences fully automatically. In Fig. 1, we show
our results on several in-the-wild sequences obtained from
the internet. Note that our method can generalize to these
unseen images and is also robust to occlusions, challenging
poses and fast motions. In Fig. 2, we present more quali-
tative results on the DO and ED dataset with severe object
and self occlusions. Again our results look plausible even
for such challenging scenarios.

3. Pose Representation in the MANO Model
In the original MANO [5] model, the pose parameters

θ̄ ∈ R16×3 represent the rotations of 16 joints. More specif-
ically, θ̄j of joint j represents the rotation of the bone be-
tween j and its children C(j) in the kinematic tree. Thus,
the pose parameters θ̄ do not include 5 finger tips that do
not have child joint. Under this representation, if one joint
has more than one child joint, the child joints have to share
the same rotation, e.g. the wrist joint. In our architecture,



Centroid Alignment

Method DO ED
AUC PCK AUC PCK

Ours .948 .816 .811 .611
Zhang et al. [9] .825 .600 - -

Boukhayma et al. [2] .763 .489 .674 .383
Z&B [10] .573 .200 - -

Spurr et al. [6] .511 .220 - -
Depth Alignment

Ours .946 .808 .773 .572
Xiang et al. [8] .912 .741 - -
Baek et al. [1] .650 .359 - -

Mueller et al. [3] .482 .240 - -
Table 1. Comparison with other methods with different align-
ment methods on DO and ED. The PCK is evaluated with an error
threshold of 20mm. Our approach achieves higher accuracy on all
datasets for both types of alignment.

Method DO ED STB
AUC PCK AUC PCK AUC PCK

DetNet + IKNet .948 .816 .811 .610 .898 .732
DetNet + IK Solver .724 .432 .798 .566 .595 .274

DetNet .923 .734 .804 .601 .891 .710
Table 2. Comparison between IKNet and a classical IK solver.
The PCK is evaluated with an error threshold of 20mm. While
IKNet improves the accuracy, the IK solver lowers it due to the
lack of complex prior knowledge.

Method DO ED STB
AUC PCK AUC PCK AUC PCK

DetNet .923 .734 .804 .601 .891 .710
DetNet w/o D .847 .595 .772 .546 .820 .628

Table 3. Evaluation of delta maps D in DetNet. The PCK is
evaluated with an error threshold of 20mm. Delta maps improve
the result significantly by providing intermediate supervision on
neighboring joints.

we altered the original representation to θ ∈ R21×3 with ad-
ditional 5 finger tip joints. More specifically, except for the
root wrist joint, rotation θj for joint j refers to the rotation of
the bone between j and its parent joint P (j). This formula-
tion enables that child joints with the same parent can have
different poses, resulting in more varied poses, which can
be learned from other datasets, e.g. our constructed 3DPos-
Data.
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